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Abstract. Mapping and quantifying the area and type of disturbance within forests is critical for sustainable forest management.
Grizzly bear (Ursus arctos) have large home ranges and diverse habitat needs and as a result, information on the extent, type,
and timing of disturbances is important. In this research we apply a remote-sensing-based disturbance mapping technique to the
southeastern extent of a grizzly bear range. We apply a data fusion approach with MODIS 250 m and Landsat 30 m spatial resolution
imagery to map disturbances biweekly from 2001–2011. A regression tree classifier was applied to classify the disturbance events
based on spatial and temporal characteristics. Fire was attributed as a disturbance based on a national fire database. Results
indicate that across the 130,727 km 2 study area, 4,603 km2 of forest were disturbed over the past decade (2001–2011), impacting
0.35% of the study area annually. Overall, 68.7% of the disturbance events were attributed to forest harvest, followed by well
sites 13.4%, fires 9.3% and road development, 8.6%. Primary source habitat contained 3.8% of disturbed land, and primary sink
areas had 5.9% disturbed land. Our findings quantify habitat change, which can aid managers by identifying significant areas for
grizzly bear conservation.

Résumé. La cartographie et la quantification de la superficie et du type de perturbation dans les forêts sont essentiellesà leur gestion
durable. Les ours grizzlis (Ursus arctos) ont de grands domaines vitaux et des besoins varíes en terme d’habitat et, par conśequent,
des informations sur l’ampleur, la nature et la ṕeriode des perturbations sont importantes. Dans cette recherche, nous utilisons une
technique de cartographie des perturbations baśee sur la t́elédétection pour la ŕegion sud-est de l’aire de ŕepartition de l’ours grizzli.
Nous appliquons une approche de fusion de donn ées avec des images 250 m MODIS et 30 m Landsat pour cartographier les per-
turbations de fac¸on bihebdomadaire de 2001̀a 2011. Un classificateur baśe sur des arbres de ŕegression a été appliqué pour classer
les évènements de perturbation en fonction des caractéristiques spatiales et temporelles. La perturbation par le feu a été attribuée
à partir d’une base nationale de donn ées sur les feux de for êt. Les résultats indiquent que dans la zone d’ étude de 130,727 km 2,
un total de 4,603 km2 a été perturbé au cours de la derni ère décennie (2001 à 2011) affectant ainsi 0,35 % de la zone d’ étude par
an. Dans l’ensemble, 68,7 % des évènements de perturbation ont été attribués à l’exploitation forestière, suivi par les sites de puits
(13,4 %), les feux (9,3 %) et le d éveloppement des routes (8,6 %). Les habitats sources principaux contenaient 3,8 % de terres
perturbées, tandis que les zones puits principales contenaient 5,9 % de terres perturb́ees. Nos résultats quantifient les changements
de l’habitat qui peuvent aider les gestionnaires en identifiant les zones importantes pour la conservation de l’ours grizzli.

INTRODUCTION
The goal of sustainable forest management is to main-

tain biodiversity, ecosystem structure, and ecosystem services
(Amoroso et al. 2011) while allowing persistence of renewable
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resources for future yield. Forested ecosystems are highly dy-
namic and often subject to a wide range of disturbances, which
can include both biological (e.g., disease, insects) and nonbio-
logical (e.g., fire, wind throw) events as well as anthropogenic
disturbances including mining, forest harvest, road building,
and infrastructure development (Nielsen, Boyce, et al. 2004).
The wildlife habitat will return to a natural state after fire and
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forest harvest, given time, whereas roads or well sites repre-
sent more permanent changes and are often viewed as habitat
loss (Roever et al. 2008). Disturbances can cause mortality to
organisms and alter the spatial fragmentation of the landscape,
with potentially significant impacts on wildlife habitat (Gardner
1998; Nielsen, Munro, et al. 2004). The amount and extent of
fragmentation, available and edge habitat quality, and resource
availability are closely related to disturbance regimes and influ-
ence forest productivity and biodiversity (Berland et al. 2008;
Linke et al. 2005).

Western Alberta, Canada, is a dynamic area with widespread
resource extraction activities (Roever et al. 2008). Increased
coal, oil, gas, and timber extraction, in addition to local pop-
ulation growth and subsequent urban expansion and develop-
ment, impacts biodiversity through habitat loss and fragmen-
tation (Schneider et al. 2003). Western Alberta represents the
eastern limit of grizzly bear (Ursus arctos) habitat in south-
ern Canada and the last of its historic range in the province
(Nielsen et al. 2009). Grizzly bear within the area occur at low
densities due to their extensive habitat demands. On the east
side of the rocky mountain massif, grizzly diet consists mainly
of plant resources (Equistem spp.,Trifolium, Vaccinium spp.,
Rubus spp., etc.) with a small proportion of ungulate protein
and insects, varying among populations (Munro et al. 2006).
The size of individual home ranges is determined by sex (Gau
1998; McLoughlin et al. 1999), age, reproductive status, and
resource availability (McLoughlin et al. 2000). Grizzly bear
have low reproduction rates, because of the age at which they
reach reproductive maturity, number of offspring produced, de-
pendency of cubs on the mother for resources and protection,
and long intervals between litters (Alberta Sustainable Resource
Development, Fish and Wildlife Division 2008). Based on pop-
ulation inventory data (2004–2008) and concerns over habitat
alteration, the status of this species was changed to “threatened”
in 2010. Resource extraction in western Alberta increases the
area of habitat alteration and the number of grizzly human–bear
interactions, which is the greatest cause of mortality for bears
(Nielsen et al. 2009). Grizzly bear require a mosaic of land-
scapes that had been historically maintained by wildfires. Be-
cause of effective fire suppression and increased resource extrac-
tion, anthropogenic disturbances have partly replaced the role
of fire in providing this variation in habitat (Bratkovich 1986;
Hillis 1986; Nielsen, Munro, et al. 2004; Neilsen, Herrero, et al.
2004). Forest regeneration and edge habitats provide a range
of herbaceous plants and shrubs that are important forage for
grizzly bear (Nielsen, Boyce, et al. 2004) and thus can, depend-
ing on the time since disturbance, provide beneficial habitat for
bears. However, roads connecting industries to resources create
increased probabilities for bear–human interactions (Berland
et al. 2008, Nielsen, Boyce, et al. 2004; Nielsen et al. 2008), and
are, therefore, a major factor in bear mortality. Comprehensive
management plans, therefore, need to recognize and map natural
and anthropogenic disturbance while minimizing human–bear
interactions. One possible method of mapping disturbances in

a timely and spatially comprehensive way is through satellite
remote sensing. Remote sensing offers potential to detect and
attribute disturbance events across large areas. For instance, the
Landsat series of satellites have proven capable of observing
land cover change at 30 m spatial resolution for over 40 years.
However, Landsat has a revisit time of 16 days, which, to-
gether with frequent cloud cover, limits timely attribution of
disturbances (Wulder, White, Goward, et al. 2008), although in-
creasingly numerous approaches for mitigating cloud cover have
emerged (Kennedy et al. 2007; Huang et al. 2010; Wulder et al.
2011; Griffiths et al. 2013). One potential approach to mitigate
this limitation is to fuse Landsat imagery with other satellite data
having a shorter revisit time, such as the data blending approach
of Gao et al. (2006). We use the Spatial Temporal Adaptive Al-
gorithm for mapping Reflectance Change (STAARCH; Hilker
et al. 2009) to derive disturbance patches based on biweekly sur-
face reflectance data at 30 m spatial resolution. STAARCH uses
combined Tasseled Cap Transformations (TCT) of Landsat The-
matic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+ )
and Moderate Resolution Imaging Spectrometer (MODIS) im-
agery. Although this technique has been successfully applied
to map disturbances across large areas, remotely sensed dis-
turbance maps might also be used for disturbance attribution.
One possible way to attribute disturbance patches is by their
shape and time of occurrence. That is, anthropogenic distur-
bance patches can be characterized by their regularity in shape
and limited spatial extent, whereas nonanthropogenic distur-
bances tend to be more irregular or variable in shape (Stewart
et al. 2009). In our previous work, Gaulton et al. (2011) applied
the STAARCH approach to examine 7 years of disturbance
across the region, validating the estimates by using a yearly
Landsat-based change sequence. Producer’s accuracies ranged
between 15–85% (average overall accuracy 62%, kappa statistic
of 0.54) depending on the size of the disturbance event.

In this study, we extend this work in 3 critical ways. First,
we extend the size of the area of interest to cover the com-
plete area of grizzly bear source and sink areas. Second, we
temporally extend the approach to cover a decade of change in
the region. Finally, we attribute the detected disturbance events
as forest cutblocks, fire, well sites, or roads using a series of
rules defined within the study area. This unique combination
of the increased focus area, the extended time period, and the
attributed disturbance types, we believe, provides the most com-
prehensive analysis of the disturbance regime in the area. Our
approach was as follows. First, disturbance events were de-
tected using the STAARCH approach. A decision tree approach
was then applied to attribute disturbance events based on both
spatial and temporal characteristics, allowing us to assess how
much of this disturbance is anthropogenic or nonanthropogenic
in nature. We distinguished among forest harvest, resource ex-
ploration and installations, and road development, as well as fire
disturbance (based on polygons from the national fire database).
Classifying disturbance by type allows anthropogenic change
to be quantified and the persistence of cover change to be
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calculated. We examined disturbance regimes across the en-
tire region, by season and by type. Finally, to demonstrate how
these data can be used, we compared disturbance events with
grizzly bear habitat states (Nielsen et al. 2006) to observe spa-
tial patterns of disturbance with safe harbor and attractive sink
habitats. Our observations aim to provide an indication of how
these datasets can be used to fill missing elements to grizzly
bear comprehensive management strategies, which is quantify-
ing habitat loss and bear-disturbance interactions that can be
applied over large areas.

METHODS

Study Area
The foothills region of Alberta, Canada, is a transition zone

between the Rocky Mountains and prairies, with elevations
ranging from 700 m–1700 m above sea level. The 130,727 km2

study area is typified by a wide range of temperature conditions
(average temperature − 12◦C to 15◦C). Forests in the lower el-
evations in the foothills region are deciduous or mixed wood,
and common tree species include aspen (Populus spp.), balsam
poplar (Populus balsamifera), white birch (Betula papyifera),
lodgepole pine (Pinus contorta), white spruce (Picea glauca),
and black spruce (Picea Mariana). The upper elevations in the
foothills region are characterized by a distinct change in tree
species dominance from mixed or deciduous to closed conifer
forests of primarily lodgepole pine (Natural Regions Commit-
tee 2006). The region has been subdivided into five grizzly bear
habitat states (Figure 1): noncritical, primary sink, secondary
sink, primary, and secondary habitats (Nielsen et al. 2006); the
states indicate whether areas are important to grizzly bear and if
there is an increased chance of conflict or mortality (sink areas).

Data
Disturbance Detection

The STAARCH algorithm relates biweekly change in forest
cover at 30 m spatial resolution (Hilker et al. 2009). In brief, the
algorithm utilizes a minimum of 2 Landsat observations of the
same location at the start and end of the study period, in addition
to a sequence of MODIS 250 m images at a biweekly interval
(Gao et al. 2006). First, the spatial extent of disturbances occur-
ring from one Landsat observation to the next is mapped using 2
or more cloud-filtered scenes (Irish et al. 2006). Disturbances are
mapped using a spectral disturbance index (Healy et al. 2005)
based on the brightness, greenness, and wetness indices follow-
ing calculation of the TCT (Kauth and Thomas 1976). Second, a
time series of MODIS imagery is used to determine the time of
disturbance at biweekly time steps. To do so, the MODIS-based
disturbance index is computed based on the MODIS land bands
and is compared to identify significant changes in the time series
of biweekly observations. The STAARCH algorithm has been
applied and validated in previous research within the same study

area (Hilker et al. 2009). This work demonstrated the accuracy
and applicability of the STAARCH-based disturbance detection
technique for identifying and categorizing disturbance based on
spatial and temporal metrics. Hilker et al. (2009) found that the
STAARCH approach had an accuracy rate of 87%, 87%, and
89% in 2002, 2003, and 2005, respectively, for correctly identi-
fying disturbances in the correct year, based on an independently
derived disturbance mapping dataset derived from aerial pho-
tography. The spatial accuracy of the detection area itself was
93% when compared to the validation dataset. Areas where the
algorithm had poorer accuracy were wetter sites, and as a result,
disturbances within flood plains and bogs might be more poorly
represented. Similarly successful disturbance detection is de-
pendent on cloud-free viewing, so in some cases there was an
8-day delay in time attribution due to cloud-obscured MODIS
data. Overall, however, we are confident in the accuracy of the
approach and its applicability for assessing and attributing dis-
turbances in this region. As persistent cloud and snow cover
makes delineation of disturbance events extremely difficult in
winter, the STAARCH methodology is applied only to growing
season images (March to October). As a result, areas disturbed
in winter will appear in the first image in the growing season of
the following year (Hilker et al. 2009).

For this project, a total of 64 Landsat 5 TM scenes cover-
ing an area of 16 path/rows (Table 1), acquired between July
2001 and August 2011 were obtained free of charge and ready
for analysis (Woodcock et al. 2008) from the USGS GLOVIS
archive.1 Images were selected to minimize cloud cover (where
possible to below 30%) as well as the temporal separation be-
tween adjacent scenes across the study area. All images were
expressed as top-of-atmosphere reflectance and were corrected
using a dark object subtraction technique (Song et al. 2001).
Land cover data was obtained from the Landsat 7 land cover
classification of Canada that was produced for the Earth Obser-
vation for Sustainable Development of forests (EOSD) initia-
tive (Wulder, White, Cranny, et al. 2008) representing circa year
2000 conditions.

Disturbance Attribution
Prior to attribution, any disturbance patches that had adjacent

disturbance patches detected on the same date were merged by
date of disturbance (DOD) and expanded until no more adjacent
polygons existed. Patches smaller than one hectare in size were
removed based on Hilker et al. (2011). Fragstats, a landscape
ecology tool that calculates intra- and interpatch metrics, was
used to obtain the necessary spatial analytics (McGarigal et al.
2012). A simple way of defining patches is by using any con-
tiguous disturbed area. The patches are then used to calculate
area- and shape-specific parameters including area/density/edge
metrics, shape metrics, core metrics, isolation/proximity met-

1http://glovis.usgs.gov/
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FIG. 1. Study area in Alberta showing the foothills area with observed Grizzly bear habitat states.

rics, contrast metrics, contagion/interspersion metrics, connec-
tivity metrics, and diversity metrics (Su et al 2011). Patches
are defined as groups of pixels surrounded by null space. Three
sets of metrics were calculated for each patch, including area,
perimeter, contiguity and perimeter–area ratio. Core area and
core area index were also calculated and can be used to quantify
the area that is not under edge influence. Finally, isolation and
proximity metrics calculate the distances among nearby patches
(Hilker et al. 2011).

A decision tree model previously developed by Hilker et al.
(2009) was then applied using the patch characteristics to iden-

tify disturbance type. Decision trees use data mining approaches
to find the most accurate predictive method based on patterns
within large datasets. As described in Hilker et al. (2009), the
key patch metrics identified as the most important variables in
disturbance prediction were DOD, core area (Core m 2), patch
area (Area m 2), core area index (CAI), and contiguity index
(Contig), described in Table 2. Core area and patch area allow
separation between the relatively small well sites and larger
fires, whereas CAI and Contigs are indicative of the disturbance
shape, separating regular-shaped harvest areas from elongated
roads or irregular-shaped fires. Patch characteristics combined
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TABLE 1
Location and the date of acquisition of the Landsat images used in the research analysis, obtained from the

USGS GLOVIS archive

Path Row 2001 2004 2008 2011

41 26 10-03-2001 06-21-2004 09-20-2008 09-29-2011
42 24 09-08-2001 07-14-2004 07-25-2008 08-10-2011
42 25 09-08-2001 07-14-2004 07-25-2008 09-04-2011
42 26 09-08-2001 07-14-2004 07-25-2008 09-04-2011
43 22 09-15-2001 06-19-2004 09-16-2007 09-27-2011
43 23 09-15-2001 06-19-2004 08-17-2008 08-26-2011
43 24 09-15-2001 06-19-2004 08-17-2008 08-26-2011
43 25 09-15-2001 06-19-2004 08-17-2008 07-29-2010
44 22 07-04-2001 08-13-2004 08-08-2008 10-01-2010
44 23 07-04-2001 08-13-2004 10-11-2008 10-01-2010
44 24 07-04-2001 08-13-2004 06-21-2008 08-17-2011
45 22 08-12-2001 06-17-2004 08-27-2009 09-09-2011
45 23 08-12-2001 06-17-2004 09-16-2008 07-27-2010
46 22 09-20-2001 08-11-2004 08-06-2008 07-27-2010
46 23 09-04-2001 08-11-2004 08-06-2008 08-31-2011
47 22 08-10-2001 08-18-2004 09-14-2008 09-07-2011

with the DOD were used to classify well sites, roads, and for-
est harvest between 2001 and 2011 using decision tree anal-
ysis. In addition to the automatic attribution of the polygons,
we utilized the Canadian National Fire Database and the Al-
berta ESRD Historical Wildfire Perimeter Data (Environment
and Sustainable Resource Development 2013).The two datasets
provide perimeter data for the outer limits of individual fires
within Alberta, based on satellite imagery. Data completeness
varies among year and collection agency and the methods of

TABLE 2
Description of the FRAGSTATS metrics used in the decision
tree model to identify type of disturbance (McGarigal et al.

2012)

Metric
Name Description

DoD Date that change was detected from the
STAARCH algorithm

Core Area within individual patches that is greater
than 30 m from the patch edge

Area Area of individual patches within the
landscape

CAI Core area divided by the total patch area
multiplied by 100

Contig Average contiguity value for cells—sum of
cell values divided by number of pixels in
the patch minus one, divided by the sum of
the template values minus one

different mapping techniques. Fire polygons were used to in-
dicate the fire attribution of intersecting STAARCH polygons,
with the remainder classified as either well site, road, fire, or
forest harvest.

Grizzly Bear Habitat States
The habitat states for the study area were created from the

methods derived in Nielsen et al. (2006), which combined the
relative probability of adult female occupancy (based on en-
vironmental variables and telemetry data; Nielsen 2005), and
risk of human-caused mortality (based on bear mortality data;
Nielsen, Boyce, et al. 2004) models. From these models Nielsen,
Boyce, et al. (2004) then derived sink (Delibes et al. 2001; Naves
et al. 2003) and safe-harbor (source) areas and extended them
across the complete study area of western Alberta. Attractive
sinks are areas where grizzly bears are likely to be, but are at
higher risk of human-caused mortality. Safe-harbor sites are ar-
eas where grizzly bears are likely to habitate, with a lower risk
of human-caused mortality. Habitat states were divided into 5
separate groups calculated from the above methods; primary and
secondary habitat (sources), primary and secondary sink (sinks)
and noncritical habitat (Nielsen et al. 2006).

Data Analysis
Our processing methodology was as follows: first, the

STAARCH algorithm was applied to identify disturbance
patches. These patches were input to FRAGSTATS to calcu-
late the required metrics for use in the decision tree devel-
oped by Hilker et al. (2011) to attribute each patch as either
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well site, road, or forest harvest. The fire disturbance layer was
then overlaid with the patch identification layer produced from
STAARCH and the decision tree, and patches identified as fire
by the fire database had their attribution changed to fire, regard-
less of the decision tree attribution. Polygons attributed as fire
by the decision tree, but not contained within the fire polygons,
were attributed to forest harvest. Disturbance polygons were
then analyzed temporally (monthly and annually), for the distri-
bution of anthropogenic and natural disturbance events. Second,
disturbance polygons were overlaid with the grizzly bear habi-
tat states to observe disturbance by type on known grizzly bear
habitat. We estimate confidence intervals on the disturbed ar-
eas based on the accuracy statements developed by Hilker et al.
(2009) and Hilker et al. 2011). In Hilker et al. (2009), estimates
of the accuracy of detecting disturbed areas is, on average, 88%.
Hilker et al. (2011) evaluated the accuracy of the disturbance
attribution, which was between 83–89%.

RESULTS

Western Alberta Disturbance Attribution
Over the decade of 2001–2011, a total of 4,603 km 2

(± 276 km2) of disturbances covering 3.5% of the study area
were detected. Figure 2 shows the disturbances from 2001–2011
and disturbance type (well site, road, fire, or forest harvest). The
results show an east–west trend across the area with the Rocky
Mountain region to the west having fewer disturbances than the
foothills region in the east. Forest harvest accounts for most of
the areas disturbed between 2001 and 2011 (Figure 3). Well
sites and roads were frequent, but have relatively small spatial
extents (0.03 and 0.02 km2, respectively). Fires, although more
infrequent, are larger (0.26 km2) than the other disturbance types
and dominate the spatial patterns in some areas. Forest harvest
occurs across the study area at differing densities and patch sizes
(as related to the cutblock size).

Summer (July and August) and fall (September and October)
periods account for most of the disturbance area. The summer
and fall months (July to October) have the highest proportion of
forest harvesting, although this sometimes decreases temporar-
ily during dry periods because of fire risk. Road construction
remains relatively consistent throughout the year; well site con-
struction is comparatively slower from June to August, and
forest fires account for a variable portion of disturbance dur-
ing the detection period, peaking in late summer and early fall
(Figure 4). Generally, September observes the highest amount of
forest disturbance through the decade, accounting for 1,032 km2

of disturbance (22%), with forest harvesting accounting for
63.5% of that change.

Well sites and roads have the smallest footprint in disturbance
area, averaging 0.03 km2 and 0.02 km 2, respectively, followed
by forest harvest (0.13 km 2) and fire disturbance (0.26 km 2).
Nonanthropogenic disturbance (fire) has 2% of the number of
disturbance events (Figure 5a), yet 9% (± 0.5%) of the total
area observed (Figure 5b). Well sites and roads compose 63%

of the disturbance events (35% and 28%, respectively), although
compose only 22% (± 2%) of the total disturbed area (13% and
9%, respectively). Forest harvest is 35% of the total disturbance
events and occupies 69% (± 5.5%) of the disturbed area in the
study area.

Habitat State Attribution
Grizzly bear source (primary and secondary) areas had lower

total disturbed area than did sink areas or noncritical habitat
(Figure 6). Primary habitat areas had a total of 672 km 2 of
anthropogenic disturbance and 195 km 2 of nonanthropogenic
disturbance (2.9% and 0.9% of the area, respectively). Sec-
ondary habitat areas had a total of 501 km 2 of anthropogenic
disturbance and 104 km2 of nonanthropogenic disturbance (2.7
km2 and 0.6 km2). Primary sink areas had a total of 1,055 km 2

of anthropogenic disturbance (5.9% of the area), and secondary
sink areas had a total of 658 km 2 of anthropogenic disturbance
(5.3% of the area). Anthropogenic disturbance is responsible
for 97% of the disturbance in both primary and secondary sink
habitats and 95% in noncritical habitats. Figure 7 shows the
annual area disturbed in each individual grizzly bear habitat
state. Primary and secondary habitat and primary sinks showed
declining trends in disturbance area from 2001–2011, except
in years 2008 and 2009, which were the highest years of total
disturbance, after 2002. Between the years of 2001 and 2005,
total disturbed area of both primary and secondary habitat was
933 km2, compared with 539 km 2 from 2006–2011. Total dis-
turbed area for both primary and secondary sink areas from
2001–2005 was 1092 km2, and from 2006–2011 was 680 km 2.
Both source and sink areas show a decline in the amount of
disturbed area from 2001–2011.

DISCUSSION
In this article we analyzed a decade (2001–2011) of forest

disturbances in western Alberta as detected by the STAARCH
algorithm for fusion of Landsat TM and MODIS satellite data.
A decision tree classifier was used to attribute individual distur-
bances to forest harvest, fire, well sites, or roads; consequently,
the spatial and temporal patterns of disturbances within the
context of grizzly bear home ranges were examined. Although
we analyzed a decade of data, 2001 and 2011 were incomplete
datasets; 2001 included 2 time stamps, September 22 and Octo-
ber 8; and 2011 included time stamps from the beginning of the
study period until July 28. This likely reduced the total amount
of area detected in these years, and impacted the monthly pro-
portions over the entire study period.

Our analysis aimed to detect both anthropogenic and nonan-
thropogenic disturbances for western Alberta, as there is no
timely, publicly available, comprehensive data source for the
region on well sites, road building, and forest harvest activities,
derived in a consistent and transparent manner. The Canadian
National Fire Database has publicly accessible historical fire
polygons and these were used to allocate fire attribution on the
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FIG. 2. STAARCH output for the Grizzly bear study area classified by the type of disturbance.

intersecting STAARCH polygons, regardless of the decision tree
results. Well sites, roads, fires, and forest harvests were selected
as the critical disturbance types for observation, because they
represent the most common and spatially unique disturbances in
the region. We applied an existing model, which used a unique
combination of time of disturbance as well as spatial features
of the detected patch, to attribute the detected disturbances. The
use of an automated change detection and attribution frame-
work is an important goal for both remote sensing scientists and
natural resource managers because it reduces subjectivity and
improves the timeliness of change data (Stewart et al. 2009).

The use of shape and contextual attributes adds additional di-
mensions to disturbance patches and evidence from a number of
studies supports the use of shape-based and reflectance-based
attributes (Stewart et al. 2009). Our approach, which incorpo-
rates the temporal dimension of when the disturbance events
occurred throughout the year, is novel. Surface or open-pit
mining, pipelines, and seismic lines also exist, although these
were omitted from our analysis because mines account for a
small proportion of the study area only (0.55 ha/km2; Linke and
McDermid 2012). Pipelines and seismic lines also were omit-
ted because they have a narrow disturbance footprint (Stewart
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FIG. 3. Total disturbed area (square kilometers) classified by the
type of disturbance and by year of acquisition over a 10-year
period for western Alberta.

et al. 2009), which cannot be reliably detected in our data fusion
approach.

The rate and size of disturbance shows a degree of agreement
with other studies. Linke and McDermid report 0.62% annual
rate of change/disturbance, comparing well to the observations
in this article. Stewart et al. (2009) identified similar levels of
well site disturbance, but higher levels of road disturbances
over their smaller, more industrial area. Pasher et al. (2013), in
a recent study, report 60% of mapped anthropogenic polygons
across the whole boreal were cutblocks, followed by mines
(0.9%), oil and gas infrastructure (0.1%), well sites (0.4%).
The relative proportions of anthropogenic disturbances matches
well with our findings. Finally, our results attribute the area of
fire disturbance at rates lower than anticipated, likely due to a
misclassification with harvest. In 2003 for example, a significant
fire year, the levels of area burnt detected in this study, compared
to the large fire database, are much lower; in some cases less
than half. This suggests that fire patterns and size are similar
in spatial characteristics to harvest events, a goal of sustainable
forest management objectives in the area.

FIG. 4. Total disturbed area (square kilometers) classified by
type of disturbance and by month of acquisition over the 10-
year study period for western Alberta.

FIG. 5. (A) Percent of individual disturbance events, and (B)
as fraction of the area in grizzly bear study area from 2001 to
2011.

Gaulton et al. (2011) observed 22% of disturbance events
in the first 2 time stamps of each year using the STAARCH
approach, compared with 23.4% in this research. This could
be a result of disturbances occurring outside of the study pe-
riod (November–February) being recorded in the next cloud-
free day in the following year. Disturbance peaked in August
and September, corresponding to the driest months of the year,
making it ideal for resource extraction (Gaulton et al. 2011). Our
results peaked from September to October, with fire disturbance
reaching its maximum in September. Stocks et al. (2003) found
that the largest fires in Canada burned in the months of June and
July. The majority of the fires have low value-at-risk and do not
require intensive fire suppression, allowing for large burn areas.
However, our research observed a limited area and did not cover
large unsuppressed northern fires (Stocks et al. 2003).

Well sites and roads are subject to omission, because of their
small area. STAARCH polygons smaller than one hectare in
size were not included in the study, because they have a high
potential for misclassification (Hilker et al. 2011) and, as a re-
sult, the number of events and disturbed area is likely under ob-
served. Expanding the STAARCH polygons to join neighboring
polygons resulted in an increased size of individual disturbance
events. Our mean disturbance area was 0.068 km 2, compared
with 0.034 km 2 found by Gaulton et al. (2011) for the same
study area. The overall rate of disturbance was not impacted;

FIG. 6. Total disturbed area (square kilometers) classified by
type and habitat state from 2001–2011.
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FIG. 7. Total disturbed area (square kilometers) classified by year, for individual habitat states (primary habitat, secondary habitat,
primary sink, secondary sink and noncritical habitat) from 2001–2011.

we observed 0.35% of disturbed land per year, compared to
0.4% in Gaulton et al. (2011).

Understanding life history traits and habitat interactions
is necessary for creating comprehensive management plans
for species of conservation concern (Franklin et al. 2000).
Grizzly bear represent a long-lived species with expansive home
ranges and low reproductive rates and have high demand for
detailed management plans (Nielsen et al. 2006). We analyze
habitat states to examine if our observations were in line with
the model framework and general trends in disturbance rates.
We confirm, as anticipated, that higher percentages of anthro-
pogenic disturbances occur in sink habitats rather than source
habitats. Higher rates of disturbance typically result in increased
probability of human–bear interactions and subsequent mortal-
ity (Nielsen, Herrero, et al. 2004; Nielsen et al. 2006; Nielsen
et al. 2008). The overall disturbed area of quality grizzly bear
habitat per year has declined over the past decade, but resource
extraction is likely to expand further into core habitat areas
(Schnieder et al. 2003), making human–bear interactions more
likely (Nielsen, Boyce, et al. 2004; Nielsen et al. 2006). Al-
though anthropogenic disturbance was higher in sink rather
than source areas, as expected, sink areas still represent high
quality habitat, but with increased risk of mortality. As the ma-

jority of grizzly bear mortality is caused by humans (McLellan
et al. 1999; Benn and Herrero 2002), ease of access to quality
habitat areas must be reduced. Disturbances can have lasting
impacts on habitats decades after the disturbance event occurs
(Nielsen, Boyce, et al. 2004), and some anthropogenic land
cover changes (well sites and roads) represent more permanent
fixtures on the landscape (Roever et al. 2008). Decommission-
ing of resource roads is a management objective that might have
the most positive influence on grizzly bear persistence in Al-
berta. Understanding the impact of anthropogenically derived
forest edges is another major issue, given their attraction to
grizzly bear, in particular in relation to food resources. A num-
ber of studies have compared grizzly bear telemetry data and
edges extracted from a combination of satellite-derived land
cover data and conventional vector datasets (roads, pipelines,
and forest harvests). Results have demonstrated that, in general,
female bears select anthropogenic edges, whereas males select
natural edges, and both genders select the natural transition of
shrub to conifer (Stewart et al. 2013). Edge metrics could rel-
atively easily be extracted from remote sensing (Wulder et al.
2009), such as in this decadal dataset, to provide fine spatial
scale information for improving management of edge features
and ultimately minimizing human–bear conflicts (Stewart et al.
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2013). The combined use of Landsat and MODIS imagery can
provide broad-scale assessment of disturbance within the ma-
jor conservation zones, as well as at the stand scale for edge
detection. The overall approach contributes to identifying areas
of grizzly bear conservation concern, and whether management
practices can be implemented to reduce attractive sink areas.

The STAARCH disturbance detection and attribution repre-
sents a tool for land managers to observe changes in habitat area,
identify disturbance type, and identify areas of conservation
concern for grizzly bears. The ability to identify anthropogenic
and nonanthropogenic disturbances is important for bear con-
servation. Anthropogenic disturbances increase the number of
human–bear interactions by creating access from resource roads
into core habitat areas. Human-caused mortality accounts for
about 90% of bear mortality in the Rocky Mountains (Benn
1998; Craighead et al. 1988; McLellan et al. 1999), therefore,
identifying anthropogenic disturbances can aid in bear man-
agement (Nielsen, Herrero, et al. 2004, Nielsen et al. 2008).
Our decade study period has the potential to be extended to
observe grizzly bear disturbance interaction over long periods.
This would provide land managers with information for making
better informed decisions on grizzly bear protection in Alberta.

CONCLUSION
In this article we demonstrate the ability to map and attribute

disturbances as detected by the STAARCH algorithm across
the foothills of western Alberta. This is made possible by fus-
ing fine spatial resolution of Landsat images (30 m) with the
high temporal resolution of MODIS (biweekly) images, which
have lower spatial resolution of 250 m. Anthropogenic distur-
bances (forest harvest, well sites, and road construction) are
the most influential disturbances on the landscape of south-
western Alberta, in terms of number and area affected. These
disturbances have both positive (increased forage) and negative
(increased human–bear interactions) implications on important
grizzly bear habitats. Our research represents a viable moni-
toring tool for land managers through the quantification of the
disturbed area and characterization of the type of disturbance.
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